«PACCMOTPEHO»

Руководитель МО учителей естественно-научного цикла Муниципального бюджетного общеобразовательного учреждения «Многопрофильная полилингвальная гимназия №180» Советского района

Советского района г. Казани

Е. И. Маскина

Протокол №1 от «28» августа 2025 г.

«СОГЛАСОВАНО»

Заместитель директора
Муниципального
бюджетного
общеобразовательного
учреждения
«Многопрофильная
полилингвальная гимназия
№180»
Советского района
г. Қазани

Р. И. Шарапова (28) августа 2025г.

«УТВЕРЖДАЮ»

Директор Муниципального бюджетного общеобразовательного учреждения «Многопрофильная полилингвальная гимназия

№180» Советского района

г. Казани

риказ № 790-0

Приказую 220-13 от «28» автуста 2025 г

ПРОГРАММА ЭЛЕКТИВНОГО КУРСА «Практикум по решению биологических задач» 10в класс

Учитель – Маскина Елена Ивановна квалификационная категория - высшая

Рассмотрено на заседании педагогического совета Протокол № 1 от «28» августа 2025 г.

Пояснительная записка

Предлагаемый элективный курс предназначен для учащихся 10 класса и рассчитан на 34 часа. Элективный курс углубляет знания по биологии и направлен на формирование и развитие основных учебных компетенций в ходе решения биологических задач.

Концепция программы курса заключается в том, что её разработка связана с разработкой системы специализированной подготовки (профильного обучения) в старших классах и направлено на реализацию личностно - ориентированного процесса, при котором максимально учитываются интересы, склонности, и способности старшеклассников. Основной акцент курса ставится на приоритете освоения учащимися способов действий, не нанося ущерб самому содержанию, т.е. развитию предметных и межпредметных компетенций, что находит отражение в контрольно-измерительных материалах ЕГЭ.

Актуальность данного элективного курса подкрепляется практической значимостью изучаемых тем, что способствует повышению интереса к познанию биологии и ориентирует на выбор профиля. У обучающихся складывается представление о творческой научно-исследовательской деятельности, накапливаются умения самостоятельно расширять знания.

Актуальность умения решать задачи по биологии возрастает в связи с введением ЕГЭ по биологии, а также с тем, что необходимо применять знания на практике. Решение задач по биологии дает возможность лучше познать фундаментальные общебиологические понятия, отражающие строение и функционирование биологических систем на всех уровнях организации жизни. Решение задач по биологии позволяет также углубить и закрепить знания по разделам общей биологии. Огромную важность в непрерывном образовании приобретают вопросы самостоятельной работы учащихся, умение мыслить самостоятельно и находить решение. Создаются условия для индивидуальной и групповой форм деятельности учащихся.

Особенностями программы курса является тесная связь его содержания с уроками общей биологии и соответствие требованиям Государственного стандарта. Подбор материалов для занятий осуществляется на основе компетентностно - ориентированных заданий, направленных на развитие трёх уровней обученности: репродуктивного, прикладного и творческого.

Целью курса является:

Обобщение, систематизация, расширение и углубление знаний учащихся об основных биологических закономерностях; формирование навыков решения биологических задач различных типов.

Задачи:

- Формирование системы знаний по основным законам биологии.
- Формирование умений и навыков решения биологических задач репродуктивного, прикладного и творческого характера.
- Отработка навыков применения генетических законов.
- Формирование потребности в приобретении новых знаний и способах их получения путем самообразования.

Благодаря элективному курсу по биологии выполняется несколько функций:

- помогает закрепить и углубить уровень знаний учащихся по биологии, применить эти знания путём решения биологических задач.
- ▶ осуществляется личностно-ориентированный подход в обучении. То есть учитываются индивидуальные склонности и способности учащихся и создаются условия для обучения их в соответствии с профессиональными интересами.

В результате прохождения программы элективного курса:

Учащиеся должны знать:

- о Основные понятия молекулярной биологии, цитологии и генетики;
- о Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков;
- о Специфические термины и символику, используемые при решении генетических задач и задач по молекулярной биологии;
- о Строение и функции органоидов клетки. Основные положения клеточной теории Т. Шванна и М. Шлейдена;
- о Химический состав клетки: белки, жиры, углеводы, нуклеиновые кислоты;

- о Механизм процессов жизнедеятельности клетки: энергетический обмен, пластический обмен; фотосинтез, биосинтез;
- о Законы Менделя, закон Моргана, закон чистоты гамет;
- о Биологическое значение всех процессов жизнедеятельности, происходящих в клетке;
- о Формы изменчивости, причины изменчивости; алгоритмы решения задач базового и повышенного уровня сложности.

Учащиеся должны уметь:

- Выстраивать алгоритм решения задач на основе полученных теоретических знаний законов цитологии, молекулярной биологии, генетики;
- Объяснять роль генетики в формировании научного мировоззрения; содержание генетической задачи;
- Обобщать и применять знания о клеточном и организменном уровне организации жизни;
- Обобщать и применять знания о многообразии организмов разных царств;
- Сопоставлять особенности строения и функционирования организмов разных царств;
- Устанавливать последовательность биологических объектов, процессов, явлений;
- Устанавливать причинно-следственные связи, делать обобщения, пополнять и систематизировать полученные знания;

Применять биологические знания в практических ситуациях (практико- ориентированное задание); применять термины по генетике, символику при решении генетических задач.

- Решать задачи по цитологии базового уровня и повышенного на применение знаний в новой ситуации;
- Решать задачи по генетике базового уровня и повышенного на применение знаний в новой ситуации;
- ▶ Решать задачи по молекулярной биологии базового уровня и повышенного на применение знаний в новой ситуации;
- ▶ Использовать общие приемы работы с тестовыми заданиями различной сложности, ориентироваться в программном материале, уметь четко формулировать свои мысли;
- Пользоваться различными пособиями, справочной литературой, Интернет- источниками.

Содержание программы элективного курса включает 3 основные раздела: решение задач по молекулярной биологии, решение задач по цитологии, решение задач по генетике, данные разделы делятся на темы, и каждая тема элективного курса является продолжением курса биологии. Элективный курс включает теоретические занятия и практикумы по решению задач.

Планируемые результаты освоения учебного курса «Практикум по решению биологических задач» на уровне среднего общего образования

Изучение курса в средней школе направлено на достижение обучающимися следующих результатов, отвечающих требованиям ФГОС к освоению основной образовательной программы среднего общего образования.

1. Личностные результаты

Личностные результаты освоения учебного курса соответствуют традиционным российским социокультурным и духовно-нравственным ценностям и предусматривают готовность обучающихся к саморазвитию, самостоятельности и личностному самоопределению, наличие мотивации к целенаправленной социально-значимой деятельности, сформированность внутренней позиции личности как особо ценностного отношения к себе, к людям, к жизни, к окружающей природной среде.

Личностные результаты отражают сформированность патриотического, гражданского, трудового, экологического воспитания, ценности научного познания и культуры здоровья.

Патриотическое воспитание

Формирование

- ценностного отношения к отечественному историческому и научному наследию в области генетики;
- способности оценивать вклад российских ученых в становление и развитие генетики как компонента естествознания;
- понимания значения науки генетики в познании законов природы, в жизни человека и современного общества;
- способности владеть достоверной информацией о передовых достижениях мировой и отечественной генетики;
- заинтересованности в получении генетических знаний в целях повышения общей культуры, функциональной и естественнонаучной грамотности.

Гражданское воспитание

Формирование

- способности определять собственную позицию по отношению к явлениям современной жизни и объяснять еè;
- умения учитывать в своих действиях необходимость конструктивного взаимодействия людей с разными убеждениями, культурными ценностями и социальным положением;
- осознания необходимости саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества;
- готовности к сотрудничеству в процессе совместного выполнения учебных, познавательных и исследовательских задач, уважительного отношения к мнению оппонентов при обсуждении проблем общебиологического и генетического содержания.

Ценность научного познания

Формирование

- мировоззрения, соответствующего современному уровню развития науки генетики, представлений о взаимосвязи развития методов и теоретических обобщений в генетике как важнейшей отрасли естествознания;
- способности устанавливать связь между прогрессивным развитием генетики и решением социально-этических, экономических и экологических проблем человечества; убежденности в познании законов природы и возможности использования достижений генетики в решении проблем, связанных с рациональным

природопользованием, обеспечением жизнедеятельности человека и общества;

• познавательных мотивов, направленных на получение новых знаний по генетике, необходимых для выработки целесообразного поведения в повседневной жизни и трудовой деятельности в целях сохранения своего здоровья.

Культура здоровья

Формирование

- понимания ценности здорового и безопасного образа жизни, бережного, ответственного и компетентного отношения к собственному физическому и психическому здоровью, ценности правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях природного и техногенного характера;
- правил здорового образа жизни, осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения), способности и готовности соблюдать меры профилактики вирусных и других заболеваний, правила поведения по обеспечению безопасности собственной жизнедеятельности.

Трудовое воспитание

Формирование

• потребности трудиться, уважения к труду и людям труда, трудовым достижениям, интереса к практическому изучению особенностей различных видов трудовой

деятельности, в том числе на основе знаний, получаемых при изучении курса;

- осознанного выбора направления продолжения образования в дальнейшем с учетом своих интересов и способностей к биологии и генетике, в частности;
- коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности.

Экологическое воспитание

Формирование

• способности использовать приобретаемые при изучении курса знания и умения при решении проблем, связанных с рациональным природопользованием (соблюдения правил поведения в природе, направленных на сохранение равновесия в экосистемах, охрану видов, экосистем) биосферы.

2. Метапредметные результаты

В составе метапредметных результатов освоения учебного курса выделяют:

- значимые для формирования мировоззрения обучающихся общенаучные понятия (закон, закономерность, теория, принцип, гипотеза, система, процесс, эксперимент, исследование, наблюдение, измерение и др.);
- универсальные учебные действия (познавательные, коммуникативные, регулятивные), которые обеспечивают формирование готовности к самостоятельному планированию и осуществлению учебной, познавательной и учебно-исследовательской деятельности.

Познавательные универсальные учебные действия

Базовые логические действия

- умение использовать при освоении знаний приемы логического мышления (анализ, синтез, классификация, обобщение), раскрывать смысл ключевых генетических понятий (выделять их характерные признаки, устанавливать взаимосвязь с другими понятиями), использовать понятия для объяснения отдельных фактов и явлений, составляющих основу генетических исследований; строить логические рассуждения (индуктивные, дедуктивные, по аналогии), делать выводы и заключения;
- умения использовать различные модельно-схематические средства для представления существенных связей и отношений в изучаемых объектах, а также противоречий разного рода, выявленных в информационных источниках.

Базовые исследовательские действия

• умений при организации и проведении учебно-исследовательской и проектной деятельности по генетике: выявлять и формулировать проблему, ставить вопросы, выдвигать гипотезу, давать определения понятиям, систематизировать и структурировать материал; наблюдать, проводить эксперименты, делать выводы и заключения, анализировать собственную позицию; относительно достоверности получаемых в ходе эксперимента результатов.

Работа с информацией

- умения вести поиск информации в различных источниках (тексте учебного пособия, научнопопулярной литературе, биологических словарях и справочниках, компьютерных базах данных, в Интернете), анализировать, оценивать информацию и по мере необходимости преобразовывать еè;
- приобретение опыта использования информационно-коммуникационных технологий, совершенствование культуры активного использования различных поисковых систем;
- умение использовать и анализировать в процессе учебной исследовательской деятельности получаемую информацию в целях прогнозирования распространенности наследственных заболеваний в последующих поколениях.

Коммуникативными универсальными учебные действия

- умение принимать активное участие в диалоге или дискуссии по существу обсуждаемой темы (задавать вопросы, высказывать суждения относительного выполнения предлагаемой задачи, учитывать интересы и согласованность позиций других участников дискуссии);
- приобретение опыта презентации выполненного эксперимента, учебного проекта.

Регулятивные универсальные учебные действия

- умения самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать свою деятельность; использовать все возможные ресурсы для достижения поставленных целей; корректировать предложенный алгоритм действий при выполнении заданий с учетом новых знаний об изучаемых объектах;
- умения выбирать на основе генетических знаний целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, своему здоровью и здоровью окружающих.

3. Предметные результаты

В составе предметных результатов по освоению содержания, установленного данной рабочей программой, выделяют:

- освоение обучающимися научных знаний, умений и способов действий, специфических для науки «Генетика»;
- виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях и реальных жизненных условиях.

Предметные результаты отражают сформированность:

- 1. умения раскрывать сущность основных понятий генетики: наследственность, изменчивость, фенотип, генотип, кариотип, гибрид, анализирующее скрещивание, сцепленное наследование, кроссинговер, секвенирование, ген, геном, полимеразная цепная реакция, локус, аллель, генетический код, экспрессия генов, аутосомы, пенетрантность гена, оперон, репликация, репарация, сплайсинг, модификация, мутагенный фактор (мутаген), мутации (геномные, генные, хромосомные), цитоплазматическая наследственность, генофонд, хромосомы, генетическая карта; умения выявлять взаимосвязь понятий, использовать названные понятия при разъяснении важных биологических закономерностей;
- 2. умения раскрывать смысл основных положений ведущих биологических теорий, гипотез, закономерностей;
- 3. представлений о молекулярных и клеточных механизмах наследования генов; об основных правилах, законах и методах изучения наследственности; о закономерностях изменчивости организмов; о роли генетики в формировании научного мировоззрения и вкладе генетических теорий в формирование современной естественнонаучной картины мира.
- 4. умения использовать терминологию и символику генетики при разъяснении мер профилактики наследственных и вирусных заболеваний, последствий влияния факторов риска на здоровье человека;
- 5. умения применять полученные знания для моделирования и прогнозирования последствий значимых биологических исследований, решения генетических задач различного уровня сложности;
- 6. умения ориентироваться в системе познавательных ценностей, составляющих основу генетической грамотности, иллюстрировать понимание связи между биологическими науками, основу которой составляет общность методов научного познания явлений живой природы.

Представленный в программе перечень предметных результатов освоения элективного учебного предмета курса «Практикум по решению биологических задач» определен с учетом требований к результатам освоения курса «Общей биологии», достижение которых проверяется на углубленном уровне в рамках единого государственного экзамена как одной из форм государственной итоговой аттестации выпускников по биологии.

Содержание курса

1. Введение (1 час)

Цели и задачи элективного курса. Актуализация ранее полученных знаний по разделам биологии: "Молекулярная биология", "Основы генетики".

Решение задач по теме «Основные свойства живого. Системная организация жизни».

2. Решение задач по теме «Молекулярная биология» (6 часов)

Тема 1.1. Химический состав клетки. Неорганические вещества.

Химические элементы и их роль в клетке. Неорганические вещества и их роль в жизнедеятельности клетки. Вода в клетке, взаимосвязь ее строения, химических свойств и биологической роли. Соли неорганических кислот, их вклад в обеспечение жизнедеятельности клетки и поддержание гомеостаза. Ионы в клетке, их функции. Осмотическое давление и тургор в клетке. Буферные системы клетки.

Тема 1.2. Химический состав клетки. Углеводы. Липиды.

Углеводы в жизнедеятельности растений, животных, грибов и бактерий. Структурные и функциональные особенности моносахаридов и дисахаридов. Биополимеры - полисахариды, строение и биологическая роль.

Жиры и липиды, особенности их строения, связанные с функциональной активностью клетки.

Тема 1.3. Химический состав клетки. Белки.

Органические вещества клетки. Биополимеры – белки. Структурная организация белковых молекул. Свойства белков. Денатурация и ренатурация – биологический смысл и значение. Функции белковых молекул. Ферменты, их роль в обеспечении процессов жизнедеятельности. Классификация ферментов.

Тема 1.4. Химический состав клетки. Нуклеиновые кислоты.

Нуклеиновые кислоты, их роль в клетке. История изучения. ДНК – молекула хранения наследственной информации. Структурная организация ДНК. Самоудвоение ДНК. РНК, ее виды, особенности строения и функционирования.

 $AT\Phi$ – основной аккумулятор энергии в клетке. Особенности строения молекулы и функции $AT\Phi$. Витамины, строение, источник поступления и роль в организме и клетке.

Демонстрации: модель ДНК и РНК, таблицы «Генетический код», «Мейоз», модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; хромосомные аномалии человека и их фенотипические проявления.

Лабораторные работы:

Л.Р.№ 1 «Изучение ферментативной активности слюны».

Л.Р.№ 2 «Выделение и очистка ДНК из клеток растений» *Итоговое занятие по разделу «Молекулярная биология»*.

3. Решение задач по теме «Цитология» (11 часов)

Тема 2.1. Цитология как наука.

Предмет, задачи и методы современной цитологии. Место цитологии в системе естественнонаучных и биологических наук. История развития цитология. Теоретическое и практическое значение цитологических исследований в медицине, здравоохранении, сельском хозяйстве, деле охраны природы и других сферах человеческой деятельности.

История открытие клетки. Клеточная теория. Основные положения первой клеточной теории. Современная клеточная теория, ее основные положения и значение для развития биологии.

Тема 2.2. Строение клетки и её органоиды.

Плазматическая мембрана и оболочка клетки. Строение мембраны клеток. Проникновение веществ через мембрану клеток. Виды транспорта веществ через цитоплазматическую мембрану клеток (пассивный и активный транспорт, экзоцитоз и эндоцитоз). Особенности строения оболочек прокариотических и эукариотических клеток.

Цитоплазма и ее структурные компоненты. Основное вещество цитоплазмы, его свойства и функции.

Ядро интерфазной клетки. Химический состав и строение ядра. Значение ядра в обмене веществ и передаче генетической информации. Ядрышко, особенности строения и функции.

Хромосомы, постоянство числа и формы, тонкое строение. Понятие о кариотипе. Гаплоидный и диплоидный наборы хромосом.

Аппарат Гольджи. Строение, расположение в клетках животных и растений, функции аппарата Гольджи: синтез полисахаридов и липидов, накопление и созревание секретов (белки, липиды, полисахариды), транспорт веществ, роль в формировании плазматической мембраны и лизосом. Строение и функции лизосом.

Эндоплазматическая сеть (ЭПС), ее типы. Особенности строения агранулярной (гладкой) и гранулярной (шероховатой) ЭПС. Значение гладкой ЭПС в синтезе полисахаридов и липидов, их накоплении и транспорте. Защитная функция ЭПС (изоляция и нейтрализация вредных для клетки веществ). Функции шероховатой ЭПС (участие в синтезе белков, в накоплении белковых продуктов и их транспорте, связь с другими органоидами и оболочкой клетки).

Рибосомы, особенности строения и роль в биосинтезе белка. Полирибосомы.

Вакуоли растительных клеток, их значение, связь с ЭПС.

Пластиды: лейкопласты, хлоропласты, хромопласты. Особенности, строение и функции пластид. ДНК пластид. Происхождение хлоропластов. Взаимное превращение пластид.

Митохондрии, строение (наружная и внутренняя мембраны, кристы). Митохондриальные ДНК, РНК, рибосомы, их роль. Функции митохондрий. Гипотезы о происхождении митохондрий. Значение возникновения кислородного дыхания в эволюции.

Клеточный центр, его строение и функции. Органоиды движения. Клеточные включения – непостоянный органоид клеток, особенности и функции.

Тема 2.3. Фотосинтез.

Обмен веществ и энергии. Понятие о пластическом и энергетическом обмене.

Фотосинтез. Световая и темновая фазы фотосинтеза, основные процессы, происходящие в эти фазы. Основные итоги световой фазы - синтез АТФ, выделение кислорода. Фотофосфорилирование. Суммарное уравнение фотосинтеза. Первичные продукты фотосинтеза. Фотосинтез и урожай сельскохозяйственных культур. Пути повышения продуктивности сельскохозяйственных растений. К.А.Тимирязев о космической роли зеленых растений. Хемосинтез и его значение в природе.

Тема 2.4. Энергетический обмен.

Энергетический обмен в клетке и его биологический смысл. Этапы энергетического обмена, приуроченность этих процессов к определенным структурам клетки. Значение митохондрий и АТФ в энергетическом обмене.

Тема 2.5. Биосинтез белка.

Биосинтез белков в клетке и его значение. Роль генов в биосинтезе белков. Генетический код и его свойства. Этапы биосинтеза белка. Реакции матричного синтеза. Регуляция синтеза белков. Генрегулятор, ген-оператор, структурные гены, их взаимодействие. Принцип обратной связи в регуляции функционирования генов.

Современные представления о природе гена.

Тема 2.6. Типы деления клеток.

Жизненный цикл клетки и его этапы. Подготовка клетки к делению – интерфаза, ее периоды (пресинтетический, синтетический, постсинтетический). Биологическое значение интерфазы. Апоптоз. Митотический цикл.

Амитоз и его значение. Митоз - цитологическая основа бесполого размножения. Фазы митоза, их характеристика. Структурные изменения и физиологические особенности органоидов клетки во время митотического деления. Веретено деления, строение и функции нитей веретена. Биологическое значение митоза.

Мейоз - цитологическая основа полового размножения. Первое деление мейоза, его фазы, их характеристика. Уменьшение числа хромосом как результат первого деления. Второе деление мейоза, фазы, их характеристика. Биологическое значение мейоза.

Тема 2.7. Бесполое и половое размножение.

Формы и способы размножения организмов. Бесполое размножение, его виды и значение. Половое размножение, его виды и эволюционное значение. Общая характеристика и особенности размножения основных групп организмов. Развитие мужских и женских половых клеток у животных и растений. Тема 2.8. Онтогенез — индивидуальное развитие организмов.

Оплодотворение и его типы. Оплодотворение и развитие зародыша у животных. Основные этапы эмбрионального развития животных. Взаимодействие частей развивающегося зародыша. Биогенетический закон, его современная интерпретация. Постэмбриональное развитие. Вредное влияние алкоголя, никотина, наркотиков, загрязнения окружающей среды на развитие зародыша животных и человека.

Общая характеристика и особенности размножения вирусов, бактерий, водорослей, мохообразных, папоротникообразных, голосеменных, покрытосеменных, грибов и лишайников. Смена фаз в жизненном цикле.

Демонстрации: схемы энергетического обмена и фотосинтеза.

Лабораторные работы:

Л.Р.№ 3 «Влияние осмоса на тургорное состояние клеток».

Л.Р.№ 4 «Сравнение диффузионной способности клеточной мембраны и клеточной оболочки».

Л.Р.№ 5 «Плазмолиз и деплазмолиз в растительной клетке».

Л.Р.№ 6 «Определение интенсивности процесса фиксации углекислого газа клетками водоросли хлореллы».

Итоговое занятие по разделу «Цитология».

4. Решение задач по теме «Генетика» (16 часов)

Тема 3.1. Независимое наследование признаков.

Предмет, задачи и методы генетики. Основные разделы генетики. Место генетики среди биологических наук. Значение генетики в разработке проблем охраны природы, здравоохранения, медицины, сельского хозяйства. Практическое значение генетики.

Г. Мендель – основоположник генетики. Метод генетического анализа, разработанный Г. Менделем. Генетическая символика. Правила записи схем скрещивания.

Наследование при моногибридном скрещивании. Доминантные и рецессивные признаки. Первый закон Менделя - закон единообразия гибридов первого поколения. Второй закон Менделя - закон расщепления. Правило чистоты гамет. Цитологические основы расщепления при моногибридном скрещивании.

Статистический характер расщепления.

Понятие о генах и аллелях. Фенотип и генотип. Гомозигота и гетерозигота.

Расщепление при возвратном и анализирующем скрещивании.

Наследование при дигибридном скрещивании. Независимое комбинирование независимых пар признаков - третий закон Менделя. Цитологические основы независимого комбинирования пар признаков.

Демонстрации: решетка Пеннета, биологический материал.

Тема 3.2. Взаимодействие аллельных и неаллельных генов.

Наследование при взаимодействии аллельных генов. Доминирование. Неполное доминирование. Кодоминирование. Сверхдоминирование. Множественный аллелизм.

Взаимодействие неаллельных генов. Новообразования при скрещивании. Особенности наследования количественных признаков. Комплиментарность. Эпистаз. Полимерия. Множественное действие генов. Примеры множественного действия генов. Возможные механизмы объяснения этого явления. Генотип как целостная исторически сложившаяся система.

Демонстрации: рисунки, иллюстрирующие взаимодействие аллельных и неаллельных генов окраска ягод земляники при неполном доминировании; окраска меха у норок при плейотропном действии гена; окраска венчика у льна — пример комплементарности; окраска плода у тыквы при эпистатическом взаимодействии двух генов; окраска колосковой чешуи у овса — пример полимерии.

Тема 3.3. Хромосомная теория наследственности.

Явление сцепленного наследования и ограниченность третьего закона Менделя. Значение работ Т.Г.Моргана и его школы в изучении явления сцепленного наследования. Кроссинговер, его биологическое значение. Генетические карты хромосом. Основные положения хромосомной теории наследственности. Вклад школы Т.Г.Моргана в разработку хромосомной теории наследственности. *Пемонстрации:* молели-аппликации иллюстрирующие законы наследственности

Демонстрации: модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; генетические карты хромосом.

Тема 3 4 Генетика пола

Генетика пола. Первичные и вторичные половые признаки. Хромосомная теория определения пола. Гомогаметный и гетерогаметный пол. Типы определения пола. Механизм поддержания соотношения полов 1:1. Наследование признаков, сцепленных с полом.

Демонстрации: схемы скрещивания на примере классической гемофилии и дальтонизма человека.

Тема 3.5. Закономерности изменчивости.

Изменчивость. Классификация изменчивости с позиций современной генетики.

Фенотипическая (модификационная и онтогенетическая) изменчивость. Норма реакции и ее зависимость от генотипа. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая.

Генотипическая (комбинативная и мутационная) изменчивость. Значение комбинативной изменчивости в объяснении эволюционных процессов, селекции организмов. Мутационная изменчивость, ее виды. Мутации, их причины. Классификация мутаций по характеру изменения генотипа (генные, хромосомные, геномные, цитоплазматические). Последствия влияния мутагенов на организм. Меры защиты окружающей среды от загрязнения мутагенами. Закон гомологических рядов в наследственной изменчивости. Н.И. Вавилова.

Экспериментальное получение мутаций.

Тема 3.6. Генетика человека.

Генетика человека. Человек как объект генетических исследований. Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический, гибридизация соматических клеток.

Наследственные болезни, их распространение в популяциях человека. Меры профилактики наследственных заболеваний человека. Вредное влияние алкоголя, никотина и наркотических веществ на наследственность человека. Медико- генетическое консультирование. Критика расистских теорий с позиций современной генетики.

Демонстрации: таблица «Символы родословной», рисунки, иллюстрирующие хромосомные аномалии человека и их фенотипические проявления.

Итоговое занятие по разделу «Генетика».

Обобщение знаний учащихся по курсу.

Тематическое планирование

No	Наименование разделов и	Кол-	В том числе
п/п	тем	во	
		часов	

			Практические занятия	Формы работы	
1	Введение.	1	-	Диагностика, тестирование.	
2	Решение задач по теме «Молекулярная биология»	6	5	Практикум по решению задач. Проверка знаний, умений и навыков, полученных при	
				изучении темы «Решение задач по молекулярной биологии».	
3	Решение задач по теме «Цитология»	11	9	Практикум по решению задач. Проверка знаний, умений и навыков, полученных при изучении темы «Решение задач по цитологии».	
4	Решение задач по теме «Генетика»	16	13	Практикум по решению задач. Проверка знаний, умений и навыков, полученных при изучении темы «Решение задач по генетике». Проверка знаний, умений и навыков, полученных при изучении элективного курса «Практикум по общей биологии»	

Темы рефератов:

- Генетика: история и современность.
- Методы изучения наследственности человека.
- Генетическая медицина: шаги в будущее.
- Чем опасны близкородственные браки?
- Изучение и прогнозирование наследования конкретного признака в своей семье.
- Изучение проявления признаков у домашних питомцев.